Selasa, 05 Maret 2013

Fungsi Uranium Sebagai Bahan Nuklir

Uranium ditemukan pada tahun 1789 oleh Martin Klaproth, seorang ilmuwan Jerman. Nama Uranium diambil dari nama planet Uranus yang ditemukan 8 tahun sebelumnya. Uranium terbentuk bersamaan dengan terjadinya bumi. Karena itu uranium dapat diketemukan di setiap batuan dan juga di air laut. Batuan yang mengandung uranium kadar tinggi disebut batuan uranium atau ”uranium ore” atau ”pitch-blende” Saat ini dan di masa depan, uranium merupakan sumber energi penting mengingat kelimpahannya yang cukup besar. Meskipun demikian uranium dikategorikan sebagai sumber energi tak-terbarukan atau ”non-renewable energy source”. Cadangan uranium yang telah diketahui secara pasti saat ini dan dapat dipungut dengan biaya kurang dari 130 USD/kgU adalah 3,3 juta ton. Cadangan uranium teridentifikasi yang dapat dipungut dengan biaya kurang dari 130 USD/kgU adalah 5,5 juta ton.Adapun uranium yang terkandung dalam batuan phosphate diperkirakan 22 juta ton, dan di air laut adalah 4200 juta ton. Atom Uranium Dalam tabel skala unsur-unsur yang diurutkan berdasarkan kenaikan massa inti atom, uranium adalah unsur terberat dari seluruh unsur alamiah (Hidrogen adalah yang paling ringan) dan diklasifikasikan sebagai logam. Uranium memiliki kerapatan atau masa jenis yang besar, sekitar 18,7 kali lipat dibanding air, dengan titik leleh yang relatif tinggi yaitu 1132 oC. Simbul kimiawi untuk unsur ini adalah U. Seperti unsur lainnya, uranium memiliki beberapa isotop. Uranium alami sebagaimana yang terdapat dalam lapisan kerak bumi utamanya tersusun atascampuran isotop U-238 (99.3%) dan U-235 (0.7%). Isotop adalah elemen atau unsur yang memiliki nomor atom yang sama tetapi jumlah neutron atau berat atom-nya berbeda. U-235 merupakan isotop uranium yang penting, sebab dalam kondisi tertentu inti ini dapat dibelah yang diikuti dengan pelepasan energi dalam jumlah besar (sekitar 200 MeV per-pembelahan). Reaksi pembelahan inti atom dikenal dengan ”fisi nuklir”, dan isotop U-235 disebut sebagai ”bahan fisil”. Seperti isotop radioaktif lainnya, uranium juga mengalami peluruhan. U-238 meluruh dalam jangka waktu yang panjang dengan waktu paro yang sama dengan umur bumi (4500 juta tahun). Ini dapat diartikan U-238 hampir tidak radioaktif jika dibandingkan dengan isotop lain di lapisan batuan dan tanah. Namun demikian peluruhan U-238 menghasilkan energi 0,1 watt/ton dalam bentuk panas. Energi peluruhan ini cukup untuk menghangatkan inti bumi. Adapun U-235 meluruh dalam jangka waktu sedikit lebih cepat dibanding U-238 (sekitar 700 juta tahun). Isotop uranium U-238 dan U-235 adalah pemancar radiasi alpha dengan energi cukup rendah dan dapat ditahan oleh selembar kertas. Bahaya radiasi akan muncul apabila isotop uranium masuk ke dalam tubuh karena akan merusak jaringan dan dapat menimbulkan penyakit kanker. Energi dari atom Uranium Inti atom dari U-235 terdiri dari 92 proton dan 143 neutron (92+143=235). Saat sebuah inti atom U-235 menangkap neutron, ia akan membelah menjadi dua inti atom baru dan melepaskan sejumlah energi dalam bentuk panas, disertai pelepasan 2 atau 3 neutron baru. Jika neutron yang dilepaskan tersebutdapat memicu reaksi yang sama pada atom U-235 lainnya, dan melepaskan neutron baru lain, reaksi fisi berantai dapat terjadi. Reaksi ini dapat terjadi dan terjadi lagi, hingga berjuta-juta kali, maka energi panas dalam jumlah sangat besar dapat dihasilkan dari sedikit Uranium. Secara kasar energi panas dari reaksi inti 1 gram U-235 adalah sama dengan energi panas dari pembakaran 1 ton batubara. reaksi fisi uranium yang berlangsung di dalam reaktor nuklir Proses membelah atau “membakar” uranium secara berantai dan terkendali adalah sebagaimana yang terjadi di dalam reaktor nuklir. Panas yang dihasilkan digunakan untuk membangkitkan uap air, dan selanjutnya uap air digunakan untuk memutar turbin dan akhirnya menghasilkanlistrik. Tabel berikut memberikan gambaran tentang bertapa besarnya kandungan energi dalam bahan bakar uranium dibandingkan sumber energi lainnya. Kandungan Energi dalam 1 ton berat (GJ) Kayu 14 Batubara 29 Minyak 42 Gas alam (cair) 46 Uranium (bahan bakar PLTN - PWR) 630.000 Uranium di dalam Reaktor Di dalam sebuah reaktor nuklir, bahan bakar uranium dirakit dalam bentuk tertentu sedemikian hingga reaksi fisi berantai yang terkendali dapat dicapai. Panas yang dihasilkan dari pembelahan U-235 kemudian digunakan untuk membangkitkan uap yang akan memutar turbin dan menggerakkan generator untuk menghasilkan listrik. Pada dasarnya PLTN dan PLT Fosil, dengan kapasitas yang sama, memiliki banyak kemiripan. Keduanya membutuhkan panas untuk menghasilkan uap guna memutar turbin dan generator. Dalam PLTN, fisi atom uranium menggantikan pembakaran batubara atau gas. Reaksi fisi berantai yang berlangsung di dalam teras reaktor nuklir dikendalikan oleh batang kendali yang mempunyai sifat menyerap neutron dan dapat ditarik/didorong untuk mengatur reaktor pada tingkat daya yang dibutuhkan. Di dalam teras reaktor yang menerapkan konsep fisi thermal sebagaimana reaktor PLTN komersial saat ini, bahan bakar uranium dikelilingi oleh materi yang disebut moderator. Bahan ini berfungsi untuk memperlambat kecepatan neutron yang dihasilkan dari reaksi reaksi fisi sehingga memungkinkan terjadinya reaksi berantai. Air, grafit dan air berat biasa digunakan sebagai moderator dalam berbagai jenis reaktor. Karena jenis bahan bakar yang digunakan (konsentrasi U-235 dalam bahan bakar uranium hanya 3 - 5%),maka apabilaterjadi malfungsi yang fatal dalam reaktor, bahan bakar dapat saja menjadi terlalu panas dan meleleh, akan tapi tidak dapat meledak seperti bom nuklir. Ada banyak jenis reaktor nuklir yang digunakan dalam PLTN komersial saat ini, dan yang masuk 3 besar dari 440 PLTN adalah PWR – Pressurized Water Reactor (48%), BWR – Boilling Water Reactor (20,8%), dan PHWR – Pressurized Heavy Water Reactor (7,7%) . Berikut ini adalah skema PLTN tipe PWR. Uranium dan Plutonium Jika U-235 disebut “bahan fisil”, maka U-238 disebut “bahan fertil”. Disebut fertil karena U-238 dapat menangkap satu neutron dalamterasreaktor dan menjadi Plutonium-239 (Pu-239) yang fisil. Pu-239 memiliki sifat yang sangat mirip dengan U-235, dalam arti, akan mengalami fisi jika ditembak dengan sebuah neutron dan juga melepaskan energi dalam jumlah besar. reaksi berantai di dalam reaktor Karena di dalam reaktor nuklir PLTN terdapat U-238 dalam jumlah besar (bahan bakar reaktor PLTN hanya mengandung 3 – 5% U-235, dan sisanya adalah U-238), reaksi U-238 dengan neutron akan terjadi sangat sering. Faktanya sekitar 1/3 energi yang dihasilkan bahan bakar dalam reaktor berasal dari pembelahan Pu-239. Tapi terkadang Pu-239 dapat menangkap neutron tanpa membelah dan berubah menjadi Pu-240. Karena Pu-239 secara progresif terbakar/membelah atau berubah menjadi Pu-240, maka semakin lama bahan bakar berada di dalam reaktor akan semakin banyak Pu-240 di dalamnya. Arti penting dari terbentuknya Pu-240 adalah plutonium yang telah dipisahkan dari bahan bakar bekas PLTN yang telah diiradiasi lebih dari 3 tahun tidak dapat digunakan sebagai bahan hulu ledak nuklir, akan tetapi dapat digunakan ulang sebagai bahan bakar PLTN. Penyiapan Bahan Bakar Uranium Bijih uranium dapat ditambang melalui metode terowongan atau metode tambang terbuka, tergantung dari kedalamannya. Setelah ditambang, bijih dihancurkan dan diolah dengan asam untuk melarutkan uranium, yang kemudian uranium dipungut dari larutan. Uranium juga dapat ditambang dengan metode pemisahan dari batuan langsung di tempat (in situ leaching / ISL), dimana Uranium dilarutkandari batuan berpori bijih bawah tanah dan dipompa ke permukaan. Produk akhir dari penambangan dan pengolahan bijih, atau ISL, adalah konsentrat uranium oksida (U3O8) yang dikenal dengan istilah ”Yellow Cake” . Dalam bentuk inilah Uranium diperjual-belikan. Sebelum dapat digunakan dalam reaktor untuk pembangkitan listrik, uranium oksida hasil penambangan harus melalui serangkaian proses. Untuk sebagian besar bahan bakar reaktor nuklir di dunia, langkah berikutnya mengubah uranium oksida menjadi dalam bentuk gas, uranium heksafluorida (UF6) murni nuklir. Konversi ini diperlukan dalam proses pengayaan uranium. Pengayaan adalah meningkatkan proporsi U-235 dari level alaminya (0,7%) menjadi 3 - 5%. Proporsi ini akan meningkatkan efesiensi teknis dalam desain dan operasi reaktor, terutama pada reaktor besar dan memungkinkan penggunaan air sebagai moderator. Setelah pengayaan, gas UF6 diperkaya diubah menjadi serbuk uranium dioksida (UO2) yang kemudian difabrikasi menjadi pelet bahan bakar. Pelet-pelet selanjutnya diletakkan dalam kelongsong logam dan dirakit menjadi perangkat bakar nuklir yang siap digunakan di dalam teras reaktor. Untuk reaktor yang menggunakan uranium alam sebagai bahan bakar (yang-mana akan memerlukan grafit atau air berat sebagai moderator), Yellow Cake dapat langsung diubah menjadi serbuk UO2 murni nuklir melalui proses pemurnian dan konversi yang lebih sederhana. Ketika perangkat bakar uranium sudah berada dalam reaktor selama 3 - 6 tahun, perangkat bakar dikeluarkan dari teras reaktor, dipindahkan, disimpan sementara untuk kemudian diproses ulang, atau disimpan lestari di bawah tanah. Pengguna Energi Nuklir Lebih 16% listrik dunia dibangkitkan dari uranium (PLTN). Jumlah ini mencapai lebih dari 2600 milyar kWh tiap tahun, dan sama jumlahnya dengan pasokan listrik dunia tahun 1960. Daya ini berasal dari 440 reaktor nuklir dengan total kapasitas sekitar 370.000 MWe yang beroperasi di 31 negara. Sekitar 30 reaktor sedang dalam konstruksi dan 40 lainnya dalam perencanaan. Belgia, Bulgaria, Finlandia, Perancis, Jerman, Hungaria, Jepang, Korea Selatan, Lituania, Slowakia, Slovenia, Swedia, Swis dan Ukraina mendapatkan 30% atau lebih listrik dari nuklir. AS memiliki lebih dari 100 reaktor beroperasi, menyuplai 20% listriknya. Perancis memenuhi lebih dari 75% kebutuhan listriknya dari uranium. Yang cukup menarik, hampir semua negara operator PLTN tidak memiliki tambang uranium di negaranya, khususnya negara Eropa barat, Jepang, dan Korea, sebagaimana terlihat dalam peta di bawah ini. Negara Pemilik dan Penambang Uranium Uranium tersebar dalam batuan dan bahkan dalam air laut. Akan tetapi, seperti logam pada umumnya, uranium jarang terkonsentrasi secara cukup untuk bernilai ekonomis. Australia memiliki cadangan uranium sekitar 732.000 ton yang dapat ditambang dengan beaya 80 USD/kgU (jauh dibawah harga pasar), Kanada memiliki 345.000 ton uranium. Cadangan uranium Australia dalam kategori ini adalah sekitar 27% cadangan dunia, sedangkan Kanada sekitar 13%. Walaupun kalah dalam jumlah cadangan, faktor politis membuat Kanada lebih unggul dari Australia sebagai penyuplai utama uranium di pasar dunia. Pada tahun 2005 Australia mengekspor lebih dari 12.000 ton U3O8bernilai hampir 600 juta dollar Australia. Produksi aktual adalah sekitar 23% dari total dunia. Kanada menghasilkan hampir 14.000 ton U3O8pada tahun 2005, sekitar sepertiga dari total dunia dan sebagian besar diekspor. Selain Australia dan Kanada, negara lain yang memiliki cadangan uranium signifikan adalah : Kazakhstan (16%), AS, Afrika Selatan, Namibia, Brasil, Nigeria dan Rusia. Beberapa negara lain memiliki sedikit cadangan yang dapat ditambang jika diperlukan. Total produksi uranium dari penambangan pada tahun 2009 adalah 50.572 tonU, yang-mana 36% diproduksi dengan metode ISL. Kazakhstan merupakan negara pemroduksi terbesar, yaitu 13.820 tonU atau 27% dari total produksi dunia dari penambangan, diikuti Kanada 20% dan Australia 16%. Perkiraan produksi pada tahun 2010 adalah 55.000 tonU. Hal ini dikarenakan adanya peningkatan tajam aktivitas penambangan di Kazahkstan dan Namibia. Uranium dijual hanya kepada negara-negara penandatangan NPT dan mengizinkan inspeksi internasional untuk memverifikasi penggunaannya hanya untuk tujuan damai. Konsumen untuk uranium Australia juga harus memiliki perjanjian safeguard bilateral dengan Australia. Kanada juga memiliki peraturan ini.

Tidak ada komentar:

Posting Komentar

Please Koment!